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LE’ITER TO THE EDITOR 

The size function in two-dimensional bond percolation: 
a series analysis 

Daniel F Styer, Michael D Edwards and Elisif A Andrews 
Department of Physics, Oberlin College, Oberlin, OH 44074, USA 

Received 1 September 1988 

Abstract. We extend the known series expansion coefficients for the mean cluster size in 
two-dimensional bond percolation and use them to accurately approximate the size function 
for all probabilities less than the critical probability. 

The mean number of bonds per cluster S (  p )  is an important descriptor in percolation 
theory (for reviews, see Essam (1972,1980) and Stauffer (1985)). It Is generally believed 
that, as the bond occupation probability p increases from zero, S (  p )  diverges at some 
critical probability p c  according to 

where the ‘reduced size function’ W( p )  is finite at p = p c  and less singular than S (  p )  
there. Sykes and Essam (1963) have deduced, from very modest assumptions, that for 
the two-dimensional square lattice p c  = 1/2, while for the two-dimensional triangular 
lattice pc=2sin(7r/18). It has also been conjectured (den Nijs 1979, Nienhuis et a1 
1980, Nienhuis 1982) that for all two-dimensional lattice percolation problems y = 
43/18. If these results are accepted (and we shall do so here), then the unknown 
features of S( p )  are all contained within the reduced function W( p ) .  This letter uses 
series extrapolation methods to find an accurate approximation for W( p ) .  

Let us denote the expansion coefficients of S(  p )  by s, so that S (  p )  has the formal 
power series 

S ( P )  = W(P) / ( l  - P / P c ) y  O < P < P c  

a3 

S ( P ) =  C sip’. 
i = O  

Coefficients up to and including si4 for the square lattice and sI0 for the triangular 
lattice were computed by Sykes and Glen (1976). We have extended both of these 
series by two terms. To find these coefficients for the square lattice size function we 
first enumerated all connected clusters of 16 or fewer bonds, classified by the number 
of perimeter bonds. From these data it is easy to find the coefficients so through 315, 
and by a trick (Sykes and Glen 1976) it is also possible to find s16. The enumeration 
was performed on a Cray X-MP computer, using a variant of Martin’s (1974) backtrack 
algorithm, and required 27 CPU hours. Similarly, the triangular lattice enumeration 
examined all clusters of 12 or fewer bonds, produced coefficients so through s12, and 
required 82 CPU hours on a VAX 8600. The expansion coefficients are given in 
table 1. 

With the series coefficients in hand, one could approach the problem using the 
standard techniques of series analysis in statistical mechanics, which focus on the 
singularity at p c .  This is not the approach taken here. Because this singularity is well 
understood, while the reduced function W( p )  is not, we choose instead to study W( p ) .  
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Table 1. The expansion coefficients s i .  

i si (square) si (triangular) 

0 1 1 
1 6 10 
2 18 46 
3 48 186 
4 126 706 
5 300 2 568 
6 762 9 004 
7 1 668 30 894 
8 4 216 103 832 
9 8 668 343 006 

10 21 988 1 123 770 
11 43 058 3 623 234 
12 110 832 1 1  630 I50 
13 202 432 
14 561 020 
15 875 382 
16 2881 286 

(The expansion coefficients for W (  p )  are readily obtained from the expansion 
coefficients for S( p ) . )  Because W (  p )  is less singular than S (  p ) ,  one expects that it 
will be easier to approximate, and our experience supports this expectation. Neither 
rational (Pad6) nor differential approximants (see Baker and Graves-Morris 1981, 
Fisher and Au-Yang 1979) suggest a singularity in W (  p )  for positive p.  Furthermore, 
rational and differential approximants give numerically similar values for W( p , ) ,  
another good indication that W ( p )  is smooth or only slightly singular. 

To investigate the square lattice reduced size function, we generated all those 
inhomogeneous differential approximants ( I D A )  (Fisher and Au-Yang 1979, Hunter 
and Baker 1979) which used the coefficients of W ( p )  up to and including order 14, 
15 or 16. The resulting 409 approximants include Pad6 and Dlog Pad6 approximants, 
which are special cases of the IDA. These approximants are not all created equal-for 
example the Euler invariant approximants of form [ 0 / L ;  L+2] or [ L / L ;  L+2]  are 
expected to be the most accurate approximants, while the truncated polynomials of 
form [ J / O ;  01 are known to be inaccurate. Thus it is not surprising that several 
approximants predict implausibly high or impossibly negative values for W (  p , ) .  But 
it is surprising-and heartening-that a total of 269 approximants predict values for 
W ( p , )  which fall in a tight cluster between 0.7 and 0.8. Furthermore, this group 
includes the vast majority of the approximants which are expected a priori to be 
accurate. The mean value of W ( p , )  for this cluster is 0.784, with standard deviation 
0.009. The simple Pad6 approximant [8/3; 01 predicts a value for W ( p c )  very close 
to this mean, and in fact it differs only minimally from other good approximants 
throughout the range 0 d p d p c .  This approximant is (coefficient values are given 
in table 2)  

and we believe that it approximates W ( p )  with an accuracy of *0.02 at pc and with 
even higher accuracy at smaller values of p .  This approximant is plotted in figure 1. 
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Table 2. Coefficients for the rational approximants @ J p )  and Wtri(p). 

Square lattice 
a, = 6.680 135 490 b, = 5.457 913 268 
a, = 12.552 841 83 b, = 9.912 923 142 
a3 = -3.591 448 054 b, = 6.198 442 597 
a4 = -26.603 351 89 
a5 = -13.265 056 83 
a6 = 25.244 496 65 
a, = 6.959 944 259 
a, = 17.027 174 71 

Triangular lattice 
a, = 7.904 205 291 b, = 4.782 736 702 
a, = 14.831 958 44 b, = 8.933 983 888 
a3 = -22.447 700 30 b, = -9.136 096 944 
a4= -88.697 715 55 b4 = 5.276 250 594 
as = 153.544 621 3 b, = 0.351 593 4692 

b, = 2.016 807 389 

0.7 I I I I 

0.0 0.2 0.4 0.6 0.8 1 .o 
PIP, 

Figure 1. The functions psq(p)  and ptri(p)  which model the reduced size function W ( p )  
for bond percolation on the square and triangular lattices respectively. 

The investigation for the triangular lattice followed the pattern established in the 
square lattice. All approximants using coefficients up to and including 10, 11 or 12 
terms were generated. Of these 235 approximants, 188 have W ( p , )  between 1.15 and 
1.25. This cluster of good approximants has a mean W(p, )  equal to 1.187 with standard 
deviation 0.005. A rational approximant which falls in the centre of the cluster and 
which can be used as a model for the true W ( p )  is [ 5 / 6 ;  01, namely 

1 + a l p + .  . . + a5p5 
w d p ) =  l + b l p + .  . .+b6p6 
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which approximates W ( p )  with an accuracy of hO.01 at p c  and with more accuracy 
at smaller values of p .  
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